Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 656: 46

Answer

$$ x=\cos t+\ln \left(\tan \frac{1}{2} t\right), \quad y=\sin t, \quad\pi / 4 \leq t \leq 3 \pi / 4 $$ the exact length of the curve is $$ \begin{aligned} L &=\int_{\pi / 4}^{3 \pi / 4} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\ &=\ln 2 \end{aligned} $$

Work Step by Step

$$ x=\cos t+\ln \left(\tan \frac{1}{2} t\right), \quad y=\sin t, \quad\pi / 4 \leq t \leq 3 \pi / 4 $$ then $$ \begin{aligned} \frac{d x}{d t}&=-\sin t+\frac{\frac{1}{2} \sec ^{2}(t / 2)}{\tan (t / 2)}\\ &=-\sin t+\frac{1}{2 \sin (t / 2) \cos (t / 2)} \\ &=-\sin t+\frac{1}{\sin t}, \end{aligned} $$ and $$ \frac{d y}{d t}=\cos t $$ so $$ \begin{aligned} \left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}&=\sin ^{2} t-2+\frac{1}{\sin ^{2} t}+\cos ^{2} t \\ &=1-2+\csc ^{2} t \\ &=\cot ^{2} t \end{aligned} $$ Thus the exact length of the curve is $$ \begin{aligned} L &=\int_{\pi / 4}^{3 \pi / 4} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\ &=\int_{\pi / 4}^{3 \pi / 4}|\cot t| d t=2 \int_{\pi / 4}^{\pi / 2} \cot t d t \\ &=2[\ln |\sin t|]_{\pi / 4}^{\pi / 2}=2\left(\ln 1-\ln \frac{1}{\sqrt{2}}\right) \\ &=2(0+\ln \sqrt{2})=2\left(\frac{1}{2} \ln 2\right) \\ &=\ln 2 \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.