Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 656: 44

Answer

$$ x=3 \cos t-\cos 3 t, \quad y=3 \sin t-\sin 3 t, \quad 0 \leq t \leq \pi $$ the exact length of the curve is $$ \begin{aligned} L &=\int_{0}^{\pi} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\ &=12 . \end{aligned} $$

Work Step by Step

$$ x=3 \cos t-\cos 3 t, \quad y=3 \sin t-\sin 3 t, \quad 0 \leq t \leq \pi $$ then $$ d x / d t=-3 \sin t+3 \sin 3 t , \quad d y / d t=3 \cos t-3 \cos 3 t $$ so $$ \begin{aligned}\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} &=9 \sin ^{2} t-18 \sin t \sin 3 t+9 \sin ^{2}(3 t)+\\ & \quad \quad +9 \cos ^{2} t-18 \cos t \cos 3 t+9 \cos ^{2}(3 t) \\ &=9\left(\cos ^{2} t+\sin ^{2} t\right)-18(\cos t \cos 3 t+ \\ &\quad \quad + \sin t \sin 3 t)+9\left[\cos ^{2}(3 t)+\sin ^{2}(3 t)\right] \\ &=9(1)-18 \cos (t-3 t)+9(1) \\ &=18-18 \cos (-2 t) \\ & =18(1-\cos 2 t) \\ &=18\left[1-\left(1-2 \sin ^{2} t\right)\right]\\ &=36 \sin ^{2} t \end{aligned} $$ Thus the exact length of the curve is $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t \\ &=\int_{0}^{\pi} \sqrt{36 \sin ^{2} t } d t \\ & =6 \int_{0}^{\pi}|\sin t| d t \\ &=6 \int_{0}^{\pi} \sin t d t \\ &=-6[\cos t]_{0}^{\pi} \\ &=-6(-1-1) \\ &=12 . \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.