Answer
$$\eqalign{
& \left( a \right)L\left( x \right) = 1 - x \cr
& \left( b \right){\text{graph}} \cr
& \left( c \right)0.97 \cr
& \left( d \right)0.05\% {\text{ error}} \cr} $$
Work Step by Step
$$\eqalign{
& f\left( x \right) = {e^{ - x}};{\text{ }}a = 0;{\text{ }}{e^{ - 0.03}} \cr
& {\text{Differentiate }}f\left( x \right) \cr
& f'\left( x \right) = \frac{d}{{dx}}\left[ {{e^{ - x}}} \right] \cr
& f'\left( x \right) = - {e^{ - x}} \cr
& {\text{Evaluate }}f\left( x \right){\text{ and }}f'\left( x \right){\text{ at }}a = 0 \cr
& f\left( 0 \right) = {e^{ - 0}} = 1 \cr
& f'\left( 0 \right) = - {e^{ - 0}} = - 1 \cr
& \cr
& \left( a \right){\text{Use the linear approximation formula }}\left( {{\text{See page 287}}} \right) \cr
& f\left( x \right) = L\left( x \right) = f\left( a \right) + f'\left( a \right)\left( {x - a} \right){\text{ }}\left( {\bf{1}} \right) \cr
& {\text{Substitute }}f\left( a \right){\text{ and }}f'\left( a \right){\text{ into }}\left( {\bf{1}} \right) \cr
& L\left( x \right) = 1 - \left( {x - 0} \right) \cr
& L\left( x \right) = 1 - x \cr
& \cr
& \left( b \right){\text{The graph of the function and the linear approximation }} \cr
& {\text{at }}x = 0{\text{ is shown below}}{\text{.}} \cr
& \cr
& \left( c \right){\text{ Estimating the given value function at }}{e^{ - 0.03}} \to x = 0.03 \cr
& L\left( x \right) = 1 - x \cr
& L\left( {0.03} \right) = 1 - 0.03 \cr
& L\left( {0.03} \right) = 0.97 \cr
& \cr
& {\text{Therefore}}{\text{,}} \cr
& {\text{ }}{e^{ - 0.03}} \approx L\left( { - 0.03} \right) \cr
& {\text{ }}{e^{ - 0.03}} \approx 0.97 \cr
& \cr
& \left( d \right){\text{ The percent error is:}} \cr
& \frac{{\left| {{\text{approximation}} - {\text{exact}}} \right|}}{{{\text{exact}}}} \times 100\% \cr
& {\text{The value given by a calculator is }} \cr
& {e^{ - 0.03}} \approx 0.970445 \cr
& \cr
& \frac{{\left| {0.97 - 0.970445} \right|}}{{0.970445}} \times 100\% \approx 0.05\% {\text{ error}} \cr} $$