Answer
$$dy = a\sin xdx$$
Work Step by Step
$$\eqalign{
& f\left( x \right) = 2 - a\cos x,\,\,\,\,\,a{\text{ constant}} \cr
& {\text{Differentiate}} \cr
& f'\left( x \right) = \frac{d}{{dx}}\left[ {2 - a\cos x} \right] \cr
& f'\left( x \right) = 0 - a\frac{d}{{dx}}\left[ {\cos x} \right] \cr
& f'\left( x \right) = - a\left( { - \sin x} \right) \cr
& f'\left( x \right) = a\sin x \cr
& {\text{Write in the form }}dy = f'\left( x \right)dx \cr
& dy = a\sin xdx \cr} $$