Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - 4.5 Linear Approximation and Differentials - 4.5 Exercises - Page 289: 26

Answer

$$a = \frac{4}{{25}},{\text{ }}\sqrt {\frac{5}{{29}}} \approx 0.041552$$

Work Step by Step

$$\eqalign{ & \sqrt {\frac{5}{{29}}} \cr & {\text{Rewrite }}\frac{5}{{29}}{\text{ as }}\frac{4}{{25}} + \frac{9}{{725}} \cr & {\text{Using the function }}f\left( x \right) = \sqrt x ,{\text{ }} \cr & f\left( x \right) = \sqrt x \cr & {\text{we have that }}\frac{5}{{29}} = \frac{4}{{25}} + \frac{9}{{725}},{\text{ let }}a = \frac{4}{{25}} \cr & {\text{* Evaluate }}f\left( {\frac{4}{{25}}} \right) \cr & f\left( {\frac{4}{{25}}} \right) = \sqrt {\frac{4}{{25}}} \cr & f\left( {\frac{4}{{25}}} \right) = \frac{2}{5} \cr & \cr & {\text{Differentiating we obtain}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\sqrt x } \right] \cr & f'\left( x \right) = \frac{1}{{2\sqrt x }} \cr & {\text{* Evaluate }}f'\left( {\frac{4}{{25}}} \right) \cr & f'\left( {\frac{4}{{25}}} \right) = \frac{1}{{2\sqrt {4/25} }} \cr & f'\left( {\frac{4}{{25}}} \right) = \frac{5}{4} \cr & \cr & {\text{Using the definition of a linear approximation to }}f{\text{ at }}a{\text{ }}\left( {page{\text{ 282}}} \right) \cr & L\left( x \right) = f\left( a \right) + f'\left( a \right)\left( {x - a} \right),{\text{ for an interval }}I{\text{ containing }}a \cr & \cr & {\text{The linear approximation }}L\left( x \right){\text{ at }}a{\text{ is:}} \cr & L\left( x \right) = \frac{2}{5} + \frac{5}{4}\left( {x - \frac{4}{{25}}} \right) \cr & L\left( x \right) = \frac{2}{5} + \frac{5}{4}x - \frac{1}{5} \cr & L\left( x \right) = \frac{5}{4}x + \frac{1}{5} \cr & \cr & {\text{Estimating the given value at }}f\left( {\frac{5}{{29}}} \right) \cr & L\left( x \right) = \frac{5}{4}x + \frac{1}{5} \cr & L\left( {\frac{5}{{29}}} \right) = \frac{5}{4}\left( {\frac{5}{{29}}} \right) + \frac{1}{5} \cr & L\left( {\frac{5}{{29}}} \right) = \frac{{241}}{{580}} \cr & {\text{Therefore}}{\text{,}} \cr & \sqrt {\frac{5}{{29}}} \approx L\left( {\frac{5}{{29}}} \right) \approx \frac{{241}}{{580}} \approx 0.41552 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.