Answer
$$\eqalign{
& \left( a \right)L\left( x \right) = - 4x + 16 \cr
& \left( b \right){\text{graph}} \cr
& \left( c \right)7.6 \cr
& \left( d \right)0.13\% {\text{ error}} \cr} $$
Work Step by Step
$$\eqalign{
& f\left( x \right) = 12 - {x^2},{\text{ }}a = 2{\text{ at }}f\left( {2.1} \right) \cr
& \cr
& {\text{Differentiate }}f\left( x \right) \cr
& f'\left( x \right) = \frac{d}{{dx}}\left[ {12 - {x^2}} \right] \cr
& f'\left( x \right) = - 2x \cr
& \cr
& \left( a \right){\text{Use the linear approximation formula }}\left( {{\text{See page 287}}} \right) \cr
& f\left( x \right) = L\left( x \right) = f\left( a \right) + f'\left( a \right)\left( {x - a} \right){\text{ }}\left( {\bf{1}} \right) \cr
& {\text{Evaluate }}f\left( a \right){\text{ and }}f'\left( a \right) \cr
& f\left( a \right) = f\left( 2 \right) = f\left( 2 \right) = 12 - {\left( 2 \right)^2} = 8 \cr
& f'\left( a \right) = f'\left( 2 \right) = - 2\left( 2 \right) = - 4 \cr
& {\text{Substitute }}f\left( a \right){\text{ and }}f'\left( a \right){\text{ into }}\left( {\bf{1}} \right) \cr
& f\left( x \right) = L\left( x \right) = 8 + \left( { - 4} \right)\left( {x - 2} \right) \cr
& L\left( x \right) = 8 - 4\left( {x - 2} \right) \cr
& L\left( x \right) = 8 - 4x + 8 \cr
& L\left( x \right) = - 4x + 16 \cr
& \cr
& \left( b \right){\text{The graph of the function and the linear approximation }} \cr
& {\text{at }}x = a{\text{ is shown below}}{\text{.}} \cr
& \cr
& \left( c \right){\text{ Estimating the given value function at }}f\left( {2.1} \right) \cr
& L\left( {2.1} \right) = - 4\left( {2.1} \right) + 16 \cr
& L\left( {2.1} \right) = 7.6 \cr
& \cr
& \left( d \right){\text{ The percent error is:}} \cr
& \frac{{\left| {{\text{approximation}} - {\text{exact}}} \right|}}{{{\text{exact}}}} \times 100\% \cr
& {\text{The exact value given by a calculator is }} \cr
& f\left( {2.1} \right) = 12 - {\left( {2.1} \right)^2} \cr
& f\left( {2.1} \right) = 7.59,{\text{ then}} \cr
& \frac{{\left| {7.6 - 7.59} \right|}}{{7.59}} \times 100\% = 0.13\% {\text{ error}} \cr} $$