Answer
$$a = 100,{\text{ }}\frac{1}{{\sqrt {119} }} \approx 0.0905$$
Work Step by Step
$$\eqalign{
& \frac{1}{{\sqrt {119} }} \cr
& {\text{Rewrite }}\frac{1}{{\sqrt {119} }}{\text{ as }}\frac{1}{{\sqrt {100 + 19} }} \cr
& {\text{Using the function }}f\left( x \right) = \frac{1}{{\sqrt x }},{\text{ }} \cr
& f\left( x \right) = \frac{1}{{\sqrt x }} \cr
& {\text{we have that }}119 = 100 + 19,{\text{ let }}a = 100 \cr
& {\text{* Evaluate }}f\left( {100} \right) \cr
& f\left( {100} \right) = \frac{1}{{\sqrt {100} }} \cr
& f\left( {100} \right) = \frac{1}{{10}} \cr
& \cr
& {\text{Differentiating we obtain}} \cr
& f'\left( x \right) = \frac{d}{{dx}}\left[ {\frac{1}{{\sqrt x }}} \right] = \frac{d}{{dx}}\left[ {{x^{ - 1/2}}} \right] \cr
& f'\left( x \right) = - \frac{1}{2}{x^{ - 3/2}} \cr
& {\text{* Evaluate }}f'\left( {100} \right) \cr
& f'\left( {100} \right) = - \frac{1}{2}{\left( {100} \right)^{ - 3/2}} \cr
& f'\left( {100} \right) = - \frac{1}{{2000}} \cr
& \cr
& {\text{Using the definition of a linear approximation to }}f{\text{ at }}a{\text{ }} \cr
& L\left( x \right) = f\left( a \right) + f'\left( a \right)\left( {x - a} \right),{\text{ for an interval }}I{\text{ containing }}a \cr
& \cr
& {\text{The linear approximation }}L\left( x \right){\text{ at }}a{\text{ is:}} \cr
& L\left( x \right) = \frac{1}{{10}} - \frac{1}{{2000}}\left( {x - 100} \right) \cr
& \cr
& {\text{Estimating the given value at }}f\left( {119} \right) \cr
& L\left( {119} \right) = \frac{1}{{10}} - \frac{1}{{2000}}\left( {119 - 100} \right) \cr
& L\left( {119} \right) = 0.0905 \cr
& {\text{Therefore}}{\text{,}} \cr
& \frac{1}{{\sqrt {119} }} \approx L\left( {119} \right) \approx 0.0905 \cr} $$