Answer
$$\eqalign{
& \left( a \right)L\left( x \right) = \frac{{\sqrt 2 }}{2} - \frac{{\sqrt 2 }}{2}\left( {x - \frac{\pi }{4}} \right) \cr
& \left( b \right){\text{graph}} \cr
& \left( c \right)0.696781 \cr
& \left( d \right)0.0001\% {\text{ error}} \cr} $$
Work Step by Step
$$\eqalign{
& f\left( x \right) = \cos x;{\text{ }}a = \frac{\pi }{4};{\text{ }}\cos \left( {0.8} \right) \cr
& {\text{Differentiate }}f\left( x \right) \cr
& f'\left( x \right) = \frac{d}{{dx}}\left[ {\cos x} \right] \cr
& f'\left( x \right) = - \sin x \cr
& {\text{Evaluate }}f\left( x \right){\text{ and }}f'\left( x \right){\text{ at }}a = \frac{\pi }{4} \cr
& f\left( 0 \right) = \cos \left( {\frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2} \cr
& f'\left( 0 \right) = - \sin \left( {\frac{\pi }{4}} \right) = - \frac{{\sqrt 2 }}{2} \cr
& \cr
& \left( a \right){\text{Use the linear approximation formula }}\left( {{\text{See page 287}}} \right) \cr
& f\left( x \right) = L\left( x \right) = f\left( a \right) + f'\left( a \right)\left( {x - a} \right){\text{ }}\left( {\bf{1}} \right) \cr
& {\text{Substitute }}f\left( a \right){\text{ and }}f'\left( a \right){\text{ into }}\left( {\bf{1}} \right) \cr
& L\left( x \right) = \frac{{\sqrt 2 }}{2} - \frac{{\sqrt 2 }}{2}\left( {x - \frac{\pi }{4}} \right) \cr
& \cr
& \left( b \right){\text{The graph of the function and the linear approximation }} \cr
& {\text{at }}x = 0{\text{ is shown below}}{\text{.}} \cr
& \cr
& \left( c \right){\text{ Estimating the given value function at }}\cos \left( {0.8} \right) \cr
& L\left( x \right) = \frac{{\sqrt 2 }}{2} - \frac{{\sqrt 2 }}{2}\left( {x - \frac{\pi }{4}} \right) \cr
& L\left( {0.8} \right) = \frac{{\sqrt 2 }}{2} - \frac{{\sqrt 2 }}{2}\left( {0.8 - \frac{\pi }{4}} \right) \cr
& L\left( {0.8} \right) \approx 0.696781 \cr
& \cr
& {\text{Therefore}}{\text{,}} \cr
& \cos \left( {0.8} \right) \approx L\left( {0.8} \right) \cr
& \cos \left( {0.8} \right) \approx 0.696781 \cr
& \cr
& \left( d \right){\text{ The percent error is:}} \cr
& \frac{{\left| {{\text{approximation}} - {\text{exact}}} \right|}}{{{\text{exact}}}} \times 100\% \cr
& {\text{The exact value given by a calculator is }} \cr
& \cos \left( {0.8} \right) = 0.69670670 \cr
& \cr
& \frac{{\left| {0.696781 - 0.69670670} \right|}}{{0.69670670}} \times 100\% = 0.0001\% {\text{ error}} \cr} $$