Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - 4.5 Linear Approximation and Differentials - 4.5 Exercises - Page 289: 46

Answer

$$dy = \frac{8}{{{{\left( {4 - x} \right)}^2}}}dx$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{{4 + x}}{{4 - x}} \cr & {\text{Differentiate by using the quotient rule}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\frac{{4 + x}}{{4 - x}}} \right] \cr & f'\left( x \right) = \frac{{\left( {4 - x} \right)\left( 1 \right) - \left( {4 + x} \right)\left( { - 1} \right)}}{{{{\left( {4 - x} \right)}^2}}} \cr & f'\left( x \right) = \frac{{4 - x + 4 + x}}{{{{\left( {4 - x} \right)}^2}}} \cr & f'\left( x \right) = \frac{8}{{{{\left( {4 - x} \right)}^2}}} \cr & {\text{Write in the form }}dy = f'\left( x \right)dx \cr & dy = \frac{8}{{{{\left( {4 - x} \right)}^2}}}dx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.