Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - Review Exercises - Page 233: 39

Answer

$$y'\left( x \right) = - \frac{{xy}}{{{x^2} + 2{y^2}}}$$

Work Step by Step

$$\eqalign{ & y\sqrt {{x^2} + {y^2}} = 15 \cr & {\text{use implicit differentiation differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left[ {y\sqrt {{x^2} + {y^2}} } \right] = \frac{d}{{dx}}\left[ {15} \right] \cr & {\text{use product rule in the left side}} \cr & y\frac{d}{{dx}}\left[ {\sqrt {{x^2} + {y^2}} } \right] + \sqrt {{x^2} + {y^2}} \frac{d}{{dx}}\left[ y \right] = \frac{d}{{dx}}\left[ {15} \right] \cr & {\text{solving derivatives}} \cr & y\left( {\frac{{\frac{d}{{dx}}\left[ {{x^2} + {y^2}} \right]}}{{2\sqrt {{x^2} + {y^2}} }}} \right) + \sqrt {{x^2} + {y^2}} y'\left( x \right) = 0 \cr & y\left( {\frac{{2x + 2yy'\left( x \right)}}{{2\sqrt {{x^2} + {y^2}} }}} \right) + \sqrt {{x^2} + {y^2}} y'\left( x \right) = 0 \cr & {\text{multiplying}} \cr & \frac{{xy}}{{\sqrt {{x^2} + {y^2}} }} + \frac{{{y^2}y'\left( x \right)}}{{\sqrt {{x^2} + {y^2}} }} + \sqrt {{x^2} + {y^2}} y'\left( x \right) = 0 \cr & {\text{solving the equation for }}y'\left( x \right) \cr & \frac{{{y^2}y'\left( x \right)}}{{\sqrt {{x^2} + {y^2}} }} + \sqrt {{x^2} + {y^2}} y'\left( x \right) = - \frac{{xy}}{{\sqrt {{x^2} + {y^2}} }} \cr & \,\,\,\,\,\,\,\,\,\,\,{\text{factor }}y'\left( x \right) \cr & \left( {\frac{{{y^2}}}{{\sqrt {{x^2} + {y^2}} }} + \sqrt {{x^2} + {y^2}} } \right)y'\left( x \right) = - \frac{{xy}}{{\sqrt {{x^2} + {y^2}} }} \cr & \left( {\frac{{{y^2} + {x^2} + {y^2}}}{{\sqrt {{x^2} + {y^2}} }}} \right)y'\left( x \right) = - \frac{{xy}}{{\sqrt {{x^2} + {y^2}} }} \cr & \left( {{x^2} + 2{y^2}} \right)y'\left( x \right) = - xy \cr & y'\left( x \right) = - \frac{{xy}}{{{x^2} + 2{y^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.