Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - Review Exercises - Page 233: 16

Answer

$\dfrac {2\left( x^{2}-x+1\right) }{x^{2}-2x+2} $

Work Step by Step

$\dfrac {d}{dx}\left( 2x\sqrt {x^{2}-2x+2}\right) =\left( \dfrac {d}{dx}\left( 2x\right) \right) \times \sqrt {x^{2}-2x+2}+\left( \dfrac {d}{dx}\sqrt {x^{2}-2x+2}\right) \times 2x=2\sqrt {x^{2}-2x+2}+\dfrac {1}{2}\times \dfrac {\left( 2x-2\right) }{\sqrt {x^{2}-2x+2}}\times 2x=\dfrac {2\left( x^{2}-2x+2+x-1\right) }{x^{2}-2x+2}=\dfrac {2\left( x^{2}-x+1\right) }{x^{2}-2x+2} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.