Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - Review Exercises - Page 233: 32

Answer

$${x^{\sin x}}\left( {\frac{{\sin x}}{x} + \ln x\cos x} \right)$$

Work Step by Step

$$\eqalign{ & \frac{d}{{dx}}\left( {{x^{\sin x}}} \right) \cr & {\text{set }}y = {x^{\sin x}} \cr & {\text{taking the natural logarithm of both sides of the equation}} \cr & \ln y = \ln {x^{\sin x}} \cr & {\text{using logarithmic properties}} \cr & \ln y = \sin x\ln x \cr & {\text{differentiate both sides}} \cr & \frac{d}{{dx}}\left[ {\ln y} \right] = \frac{d}{{dx}}\left[ {\sin x\ln x} \right] \cr & \frac{1}{y}\frac{{dy}}{{dx}} = \sin x\frac{d}{{dx}}\left[ {\ln x} \right] + \ln x\frac{d}{{dx}}\left[ {\sin x} \right] \cr & {\text{solving derivatives}} \cr & \frac{1}{y}\frac{{dy}}{{dx}} = \sin x\left( {\frac{1}{x}} \right) + \ln x\cos x \cr & \frac{{dy}}{{dx}} = y\left( {\frac{{\sin x}}{x} + \ln x\cos x} \right) \cr & {\text{replace }}y{\text{ with }}{x^{\sin x}} \cr & \frac{{d\left( {{x^{\sin x}}} \right)}}{{dx}} = {x^{\sin x}}\left( {\frac{{\sin x}}{x} + \ln x\cos x} \right) \cr & \frac{d}{{dx}}\left( {{x^{\sin x}}} \right) = {x^{\sin x}}\left( {\frac{{\sin x}}{x} + \ln x\cos x} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.