Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - Review Exercises - Page 233: 35

Answer

$$\sqrt 3 + \frac{\pi }{6}$$

Work Step by Step

$$\eqalign{ & \frac{d}{{dx}}{\left. {\left( {x{{\sec }^{ - 1}}x} \right)} \right|_{x = \frac{2}{{\sqrt 3 }}}} \cr & {\text{set }}y = x{\sec ^{ - 1}}x \cr & {\text{differentiate }}y \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {x{{\sec }^{ - 1}}x} \right] \cr & {\text{use product rule}} \cr & \frac{{dy}}{{dx}} = x\frac{d}{{dx}}\left[ {{{\sec }^{ - 1}}x} \right] + {\sec ^{ - 1}}x\frac{d}{{dx}}\left[ x \right] \cr & {\text{where }}\frac{d}{{dx}}\left[ {{{\sec }^{ - 1}}x} \right] = \frac{1}{{\left| x \right|\sqrt {{x^2} - 1} }} \cr & \frac{{dy}}{{dx}} = x\left( {\frac{1}{{\left| x \right|\sqrt {{x^2} - 1} }}} \right) + {\sec ^{ - 1}}x \cr & {\text{substitute }}y = x{\sec ^{ - 1}}x \cr & \frac{d}{{dx}}\left( {x{{\sec }^{ - 1}}x} \right) = x\left( {\frac{1}{{\left| x \right|\sqrt {{x^2} - 1} }}} \right) + {\sec ^{ - 1}}x \cr & {\text{evaluate at }}x = \frac{2}{{\sqrt 3 }} \cr & \frac{d}{{dx}}{\left. {\left( {x{{\sec }^{ - 1}}x} \right)} \right|_{x = \frac{2}{{\sqrt 3 }}}} = \left( {\frac{2}{{\sqrt 3 }}} \right)\left( {\frac{1}{{\left| {2/\sqrt 3 } \right|\sqrt {{{\left( {2/\sqrt 3 } \right)}^2} - 1} }}} \right) + {\sec ^{ - 1}}\left( {\frac{2}{{\sqrt 3 }}} \right) \cr & {\text{simplifying}} \cr & \frac{d}{{dx}}{\left. {\left( {x{{\sec }^{ - 1}}x} \right)} \right|_{x = \frac{2}{{\sqrt 3 }}}} = \left( {\frac{1}{{\sqrt 3 /3}}} \right) + \frac{\pi }{6} \cr & \frac{d}{{dx}}{\left. {\left( {x{{\sec }^{ - 1}}x} \right)} \right|_{x = \frac{2}{{\sqrt 3 }}}} = \sqrt 3 + \frac{\pi }{6} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.