Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - Review Exercises - Page 233: 34

Answer

$$\frac{8}{{17}}$$

Work Step by Step

$$\eqalign{ & {\text{ }}f\left( x \right) = {\tan ^{ - 1}}\left( {4{x^2}} \right) \cr & {\text{find the derivative}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\left( {4{x^2}} \right)} \right] \cr & {\text{use the formula }}\frac{d}{{dx}}\left[ {{{\tan }^{ - 1}}u} \right] = \frac{1}{{1 + {u^2}}}\frac{{du}}{{dx}}.{\text{ consider }}u = 4{x^2} \cr & f'\left( x \right) = \frac{1}{{1 + {{\left( {4{x^2}} \right)}^2}}}\frac{d}{{dx}}\left[ {4{x^2}} \right] \cr & {\text{solve the derivative and simplify}} \cr & f'\left( x \right) = \frac{1}{{1 + 16{x^4}}}\left( {8x} \right) \cr & f'\left( x \right) = \frac{{8x}}{{1 + 16{x^4}}} \cr & \cr & {\text{calculate }}f'\left( 1 \right) \cr & f'\left( 1 \right) = \frac{{8\left( 1 \right)}}{{1 + 16{{\left( 1 \right)}^4}}} \cr & f'\left( 1 \right) = \frac{8}{{17}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.