Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - Review Exercises - Page 233: 10

Answer

$$f'\left( x \right) = 4x - 3$$

Work Step by Step

$$\eqalign{ & {\text{Let }}f\left( x \right) = 2{x^2} - 3x + 1 \cr & {\text{Differentiate using the definition of the derivative}} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{2{{\left( {x + h} \right)}^2} - 3\left( {x + h} \right) + 1 - \left( {2{x^2} - 3x + 1} \right)}}{h} \cr & {\text{Simplifying}} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{2\left( {{x^2} + 2xh + {h^2}} \right) - 3\left( {x + h} \right) + 1 - \left( {2{x^2} - 3x + 1} \right)}}{h} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{2{x^2} + 4xh + 2{h^2} - 3x - 3h + 1 - 2{x^2} + 3x - 1}}{h} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{4xh + 2{h^2} - 3h}}{h} \cr & f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \left( {4x + 2h - 3} \right) \cr & {\text{Evaluate the limit}} \cr & f'\left( x \right) = 4x + 2\left( 0 \right) - 3 \cr & f'\left( x \right) = 4x - 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.