Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - Review Exercises - Page 233: 11

Answer

$$g'\left( x \right) = \frac{1}{{\sqrt {2x - 3} }}$$

Work Step by Step

$$\eqalign{ & {\text{Let }}g\left( x \right) = \sqrt {2x - 3} \cr & {\text{Differentiate using the definition of the derivative}} \cr & g'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \cr & g'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\sqrt {2\left( {x + h} \right) - 3} - \sqrt {2x - 3} }}{h} \cr & g'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\sqrt {2x + 2h - 3} - \sqrt {2x - 3} }}{h} \cr & {\text{Rationalizing}} \cr & g'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\sqrt {2x + 2h - 3} - \sqrt {2x - 3} }}{h} \times \frac{{\sqrt {2x + 2h - 3} + \sqrt {2x - 3} }}{{\sqrt {2x + 2h - 3} + \sqrt {2x - 3} }} \cr & g'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {\sqrt {2x + 2h - 3} } \right)}^2} - {{\left( {\sqrt {2x - 3} } \right)}^2}}}{{h\left( {\sqrt {2x + 2h - 3} + \sqrt {2x - 3} } \right)}} \cr & g'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{2x + 2h - 3 - 2x + 3}}{{h\left( {\sqrt {2x + 2h - 3} + \sqrt {2x - 3} } \right)}} \cr & g'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{2h}}{{h\left( {\sqrt {2x + 2h - 3} + \sqrt {2x - 3} } \right)}} \cr & g'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{2}{{\sqrt {2x + 2h - 3} + \sqrt {2x - 3} }} \cr & {\text{Evaluate the limit}} \cr & g'\left( x \right) = \frac{2}{{\sqrt {2x + 2\left( 0 \right) - 3} + \sqrt {2x - 3} }} \cr & g'\left( x \right) = \frac{2}{{\sqrt {2x - 3} + \sqrt {2x - 3} }} \cr & g'\left( x \right) = \frac{2}{{2\sqrt {2x - 3} }} \cr & g'\left( x \right) = \frac{1}{{\sqrt {2x - 3} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.