Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - Review Exercises - Page 233: 36

Answer

$$ - \frac{1}{2}$$

Work Step by Step

$$\eqalign{ & \frac{d}{{dx}}{\left. {\left( {{{\tan }^{ - 1}}{e^{ - x}}} \right)} \right|_{x = 0}} \cr & {\text{set }}y = {\tan ^{ - 1}}{e^{ - x}} \cr & {\text{differentiate }}y \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{{\tan }^{ - 1}}{e^{ - x}}} \right] \cr & {\text{use }}\frac{d}{{dx}}\left[ {{{\tan }^{ - 1}}u} \right] = \frac{1}{{1 + {u^2}}}\frac{{du}}{{dx}}.{\text{ consider }}u = {e^{ - x}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{1 + {{\left( {{e^{ - x}}} \right)}^2}}}\frac{d}{{dx}}\left[ {{e^{ - x}}} \right] \cr & \frac{{dy}}{{dx}} = \frac{1}{{1 + {{\left( {{e^{ - x}}} \right)}^2}}}\left( { - {e^{ - x}}} \right) \cr & \frac{{dy}}{{dx}} = - \frac{{{e^{ - x}}}}{{1 + {e^ - }^{2x}}} \cr & {\text{substitute }}y = {\tan ^{ - 1}}{e^{ - x}} \cr & \frac{d}{{dx}}\left( {{{\tan }^{ - 1}}{e^{ - x}}} \right) = - \frac{{{e^{ - x}}}}{{1 + {e^ - }^{2x}}} \cr & {\text{evaluate at }}x = 0 \cr & \frac{d}{{dx}}{\left. {\left( {{{\tan }^{ - 1}}{e^{ - x}}} \right)} \right|_{x = 0}} = - \frac{{{e^{ - 0}}}}{{1 + {e^ - }^{2\left( 0 \right)}}} \cr & {\text{simplifying}} \cr & \frac{d}{{dx}}{\left. {\left( {{{\tan }^{ - 1}}{e^{ - x}}} \right)} \right|_{x = 0}} = - \frac{1}{{1 + 1}} \cr & \frac{d}{{dx}}{\left. {\left( {{{\tan }^{ - 1}}{e^{ - x}}} \right)} \right|_{x = 0}} = - \frac{1}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.