Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 907: 9

Answer

Please see the figure attached. $\mathop \smallint \limits_{x = 0}^4 \mathop \smallint \limits_{y = 0}^x \cos y{\rm{d}}y{\rm{d}}x = 1 - \cos 4$

Work Step by Step

We have $f\left( {x,y} \right) = \cos y$ and the domain ${\cal D} = \left\{ {0 \le x \le 4,0 \le y \le x} \right\}$. Considering ${\cal D}$ as a vertically simple region, we evaluate: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \cos y{\rm{d}}A = \mathop \smallint \limits_{x = 0}^4 \mathop \smallint \limits_{y = 0}^x \cos y{\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^4 \left( {\sin y|_0^x} \right){\rm{d}}x = \mathop \smallint \limits_{x = 0}^4 \sin x{\rm{d}}x$ $ = - \left( {\cos x|_0^4} \right) = 1 - \cos 4$ So, $\mathop \smallint \limits_{x = 0}^4 \mathop \smallint \limits_{y = 0}^x \cos y{\rm{d}}y{\rm{d}}x = 1 - \cos 4$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.