Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 907: 8

Answer

$\int_1^2 \int_1^2\dfrac{y}{x+y^2} \ dx \ dy=3 \ln (6) -\dfrac{3}{2} \ln (3)-\dfrac{5}{2} \ln (5) +\ln (2)$

Work Step by Step

Here, we have: $\int_1^2 \int_1^2\dfrac{y}{x+y^2} \ dx \ dy=\int_1^2 \int_1^2\dfrac{y}{x+y^2} \ dy \ dx$ or, $=\dfrac{1}{2} \times \int_1^2 [\ln (x+y^2)]_1^2 \ dx$ or, $=\dfrac{1}{2} \times \int_1^2 [\ln (x+4)-\ln (x+1)] \ dx$ or, $=\dfrac{1}{2} \times [(x+4) \ln (x+4) -x-(x+1) \ln (x+1)+x]_1^2 $ Thus, we get: $\int_1^2 \int_1^2\dfrac{y}{x+y^2} \ dx \ dy=3 \ln (6) -\dfrac{3}{2} \ln (3)-\dfrac{5}{2} \ln (5) +\ln (2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.