Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 907: 13

Answer

$\int_0^1 \int_{0.5 y^2}^{y^2} y e^{1+x} \ dx \ dy=0.5 (e^2-2e^{1.5}+e)$

Work Step by Step

Here, we have: $\int_0^1 \int_{0.5 y^2}^{y^2} y e^{1+x} \ dx \ dy=\int_0^1 [y e^{1+x}]_{0.5 y^2}^{y^2} \ dy$ or, $= [\dfrac{1}{2} \times e^{1+y^2}-e^{1+0.5y^2}]_0^1 $ or, $=\dfrac{e^2}{2}-e^{1.5}-\dfrac{e}{2}+e$ or, $=\dfrac{e^2}{2}-e^{1.5}+\dfrac{e}{2}$ or, $=0.5 (e^2-2e^{1.5}+e)$ Thus, we get: $\int_0^1 \int_{0.5 y^2}^{y^2} y e^{1+x} \ dx \ dy=0.5 (e^2-2e^{1.5}+e)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.