Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 907: 2

Answer

(a) ${S_{4,4}} \simeq 0.947644$ (b) ${S_{10,10}} \simeq 0.946334$ ${S_{50,50}} \simeq 0.946093$ ${S_{100,100}} \simeq 0.946086$

Work Step by Step

(a) We have the double integral: $\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 \cos \left( {xy} \right){\rm{d}}x{\rm{d}}y$. Since we use the regular partition to compute the Riemann sum ${S_{4,4}}$, we have $\Delta x = \frac{{1 - 0}}{4} = \frac{1}{4}$, ${\ \ \ \ \ }$ $\Delta y = \frac{{1 - 0}}{4} = \frac{1}{4}$ Method: use midpoints as sample points. The Riemann sum ${S_{4,4}}$ to estimate $\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 \cos \left( {xy} \right){\rm{d}}x{\rm{d}}y$ is given by ${S_{4,4}} = \mathop \sum \limits_{i = 1}^4 \mathop \sum \limits_{j = 1}^4 f\left( {{P_{ij}}} \right)\Delta {x_i}\Delta {y_j} = \frac{1}{{16}}\mathop \sum \limits_{i = 1}^4 \mathop \sum \limits_{j = 1}^4 f\left( {{P_{ij}}} \right)$ $ = \frac{1}{{16}}(f\left( {\frac{1}{8},\frac{1}{8}} \right) + f\left( {\frac{3}{8},\frac{1}{8}} \right) + f\left( {\frac{5}{8},\frac{1}{8}} \right) + f\left( {\frac{7}{8},\frac{1}{8}} \right)$ ${\ \ \ }$ $ + f\left( {\frac{1}{8},\frac{3}{8}} \right) + f\left( {\frac{3}{8},\frac{3}{8}} \right) + f\left( {\frac{5}{8},\frac{3}{8}} \right) + f\left( {\frac{7}{8},\frac{3}{8}} \right)$ ${\ \ \ }$ $ + f\left( {\frac{1}{8},\frac{5}{8}} \right) + f\left( {\frac{3}{8},\frac{5}{8}} \right) + f\left( {\frac{5}{8},\frac{5}{8}} \right) + f\left( {\frac{7}{8},\frac{5}{8}} \right)$ ${\ \ \ }$ $ + f\left( {\frac{1}{8},\frac{7}{8}} \right) + f\left( {\frac{3}{8},\frac{7}{8}} \right) + f\left( {\frac{5}{8},\frac{7}{8}} \right) + f\left( {\frac{7}{8},\frac{7}{8}} \right))$ $ = \frac{1}{{16}}(\cos \left( {\frac{1}{{64}}} \right) + \cos \left( {\frac{3}{{64}}} \right) + \cos \left( {\frac{5}{{64}}} \right) + \cos \left( {\frac{7}{{64}}} \right)$ ${\ \ \ }$ $ + \cos \left( {\frac{3}{{64}}} \right) + \cos \left( {\frac{9}{{64}}} \right) + \cos \left( {\frac{{15}}{{64}}} \right) + \cos \left( {\frac{{21}}{{64}}} \right)$ ${\ \ \ }$ $ + \cos \left( {\frac{5}{{64}}} \right) + \cos \left( {\frac{{15}}{{64}}} \right) + \cos \left( {\frac{{25}}{{64}}} \right) + \cos \left( {\frac{{35}}{{64}}} \right)$ ${\ \ \ }$ $ + \cos \left( {\frac{7}{{64}}} \right) + \cos \left( {\frac{{21}}{{64}}} \right) + \cos \left( {\frac{{35}}{{64}}} \right) + \cos \left( {\frac{{49}}{{64}}} \right))$ ${S_{4,4}} \simeq 0.947644$ (b) 1. Case $N=10$ $\Delta x = \frac{{1 - 0}}{{10}} = \frac{1}{{10}}$, ${\ \ \ \ \ }$ $\Delta y = \frac{{1 - 0}}{{10}} = \frac{1}{{10}}$ The Riemann sum ${S_{10,10}}$ to estimate $\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 \cos \left( {xy} \right){\rm{d}}x{\rm{d}}y$ is given by ${S_{10,10}} = \mathop \sum \limits_{i = 1}^{10} \mathop \sum \limits_{j = 1}^{10} f\left( {{P_{ij}}} \right)\Delta {x_i}\Delta {y_j} = \frac{1}{{100}}\mathop \sum \limits_{i = 1}^{10} \mathop \sum \limits_{j = 1}^{10} f\left( {{P_{ij}}} \right)$ Using a computer algebra system, we obtain ${S_{10,10}} \simeq 0.946334$ 2. Case $N=50$ $\Delta x = \frac{{1 - 0}}{{50}} = \frac{1}{{50}}$, ${\ \ \ \ \ }$ $\Delta y = \frac{{1 - 0}}{{50}} = \frac{1}{{50}}$ The Riemann sum ${S_{50,50}}$ to estimate $\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 \cos \left( {xy} \right){\rm{d}}x{\rm{d}}y$ is given by ${S_{50,50}} = \mathop \sum \limits_{i = 1}^{50} \mathop \sum \limits_{j = 1}^{50} f\left( {{P_{ij}}} \right)\Delta {x_i}\Delta {y_j} = \frac{1}{{2500}}\mathop \sum \limits_{i = 1}^{50} \mathop \sum \limits_{j = 1}^{50} f\left( {{P_{ij}}} \right)$ Using a computer algebra system, we obtain ${S_{50,50}} \simeq 0.946093$ 3. Case $N=100$ $\Delta x = \frac{{1 - 0}}{{100}} = \frac{1}{{100}}$, ${\ \ \ \ \ }$ $\Delta y = \frac{{1 - 0}}{{100}} = \frac{1}{{100}}$ The Riemann sum ${S_{100,100}}$ to estimate $\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 \cos \left( {xy} \right){\rm{d}}x{\rm{d}}y$ is given by ${S_{100,100}} = \mathop \sum \limits_{i = 1}^{100} \mathop \sum \limits_{j = 1}^{100} f\left( {{P_{ij}}} \right)\Delta {x_i}\Delta {y_j} = \frac{1}{{10000}}\mathop \sum \limits_{i = 1}^{100} \mathop \sum \limits_{j = 1}^{100} f\left( {{P_{ij}}} \right)$ Using a computer algebra system, we obtain ${S_{100,100}} \simeq 0.946086$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.