Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 907: 4

Answer

(a) The sine function is an odd function, therefore the inner integral is zero. Hence, the double integral is zero. (b) The cosine function is an even function. The inner integral and the outer integral is always positive, therefore $\mathop \smallint \limits_{ - 1}^1 \mathop \smallint \limits_{ - 1}^1 \cos \left( {xy} \right){\rm{d}}x{\rm{d}}y > 0$

Work Step by Step

(a) Evaluate: $\mathop \smallint \limits_{y = - 1}^1 \mathop \smallint \limits_{x = - 1}^1 \sin \left( {xy} \right){\rm{d}}x{\rm{d}}y = - \mathop \smallint \limits_{y = - 1}^1 \frac{1}{y}\left( {\cos \left( {xy} \right)|_{ - 1}^1} \right){\rm{d}}y$ $ = - \mathop \smallint \limits_{y = - 1}^1 \frac{1}{y}\left( {\cos y - \cos \left( { - y} \right)} \right){\rm{d}}y$ Since $\cos \left( { - y} \right) = \cos y$, so $\mathop \smallint \limits_{y = - 1}^1 \mathop \smallint \limits_{x = - 1}^1 \sin \left( {xy} \right){\rm{d}}x{\rm{d}}y = 0$. The sine function is an odd function, therefore the inner integral is zero. Hence, the double integral is zero. (b) Evaluate $\mathop \smallint \limits_{y = - 1}^1 \mathop \smallint \limits_{x = - 1}^1 \cos \left( {xy} \right){\rm{d}}x{\rm{d}}y = \mathop \smallint \limits_{y = - 1}^1 \frac{1}{y}\left( {\sin \left( {xy} \right)|_{ - 1}^1} \right){\rm{d}}y$ $\mathop \smallint \limits_{y = - 1}^1 \mathop \smallint \limits_{x = - 1}^1 \cos \left( {xy} \right){\rm{d}}x{\rm{d}}y = 2\mathop \smallint \limits_{y = - 1}^1 \frac{1}{y}\sin y{\rm{d}}y$ Notice that $\sin y$ and $\frac{1}{y}$ are both odd functions. However, the product $\frac{1}{y}\sin y$ is an even function. Therefore, we can write $\mathop \smallint \limits_{y = - 1}^1 \mathop \smallint \limits_{x = - 1}^1 \cos \left( {xy} \right){\rm{d}}x{\rm{d}}y = 4\mathop \smallint \limits_{y = 0}^1 \frac{1}{y}\sin y{\rm{d}}y$ Since $\frac{1}{y}$ and $\sin y$ are both positive in the domain $(0,1]$, the integral is positive. Hence, $\mathop \smallint \limits_{ - 1}^1 \mathop \smallint \limits_{ - 1}^1 \cos \left( {xy} \right){\rm{d}}x{\rm{d}}y > 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.