Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 907: 14

Answer

Please see the figure attached. $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \ln \left( {x + y} \right){\rm{d}}A \simeq 5$

Work Step by Step

We have $f\left( {x,y} \right) = \ln \left( {x + y} \right)$ and the domain ${\cal D} = \left\{ {1 \le y \le {\rm{e}},y \le x \le 2y} \right\}$. Considering ${\cal D}$ as a horizontally simple region, we evaluate: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \ln \left( {x + y} \right){\rm{d}}A = \mathop \smallint \limits_{y = 1}^{\rm{e}} \mathop \smallint \limits_{x = y}^{2y} \ln \left( {x + y} \right){\rm{d}}x{\rm{d}}y$ The antiderivative of $\ln \left( {x + y} \right)$ is $x\ln \left( {x + y} \right) + y\ln \left( {x + y} \right) - x$ because $\frac{d}{{dx}}\left( {x\ln \left( {x + y} \right) + y\ln \left( {x + y} \right) - x} \right)$ $ = \ln \left( {x + y} \right) + \frac{x}{{x + y}} + \frac{y}{{x + y}} - 1$ $ = \ln \left( {x + y} \right)$ Therefore, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \ln \left( {x + y} \right){\rm{d}}A = \mathop \smallint \limits_{y = 1}^{\rm{e}} \left( {\left( {x\ln \left( {x + y} \right) + y\ln \left( {x + y} \right) - x} \right)|_y^{2y}} \right){\rm{d}}y$ $ = \mathop \smallint \limits_{y = 1}^{\rm{e}} \left( {3y\ln \left( {3y} \right) - 2y - 2y\ln \left( {2y} \right) + y} \right){\rm{d}}y$ (1) ${\ \ \ \ }$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \ln \left( {x + y} \right){\rm{d}}A = \mathop \smallint \limits_{y = 1}^{\rm{e}} \left( {3y\ln \left( {3y} \right) - 2y\ln \left( {2y} \right) - y} \right){\rm{d}}y$ Write $u = \ln \left( {ay} \right)$ and $dv = ydy$. So, $du = \frac{1}{y}dy$ and $v = \frac{1}{2}{y^2}$. Using Integration by Parts Formula (Section 8.1), $\smallint u{\rm{d}}v = uv - \smallint v{\rm{d}}u$ we get $\smallint y\ln \left( {ay} \right){\rm{d}}y = \frac{1}{2}{y^2}\ln \left( {ay} \right) - \frac{1}{2}\smallint y{\rm{d}}y$ $\smallint y\ln \left( {ay} \right){\rm{d}}y = \frac{1}{2}{y^2}\ln \left( {ay} \right) - \frac{1}{4}{y^2}$ Thus, equation (1) becomes $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \ln \left( {x + y} \right){\rm{d}}A = \mathop \smallint \limits_{y = 1}^{\rm{e}} \left( {3y\ln \left( {3y} \right) - 2y\ln \left( {2y} \right) - y} \right){\rm{d}}y$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \ln \left( {x + y} \right){\rm{d}}A = \left( {\frac{3}{2}{y^2}\ln \left( {3y} \right) - \frac{3}{4}{y^2} - {y^2}\ln \left( {2y} \right) + \frac{1}{2}{y^2} - \frac{1}{2}{y^2}} \right)|_1^{\rm{e}}$ $ = \frac{3}{2}{{\rm{e}}^2}\ln \left( {3{\rm{e}}} \right) - \frac{3}{4}{{\rm{e}}^2} - {{\rm{e}}^2}\ln \left( {2{\rm{e}}} \right) - \frac{3}{2}\ln 3 + \frac{3}{4} + \ln 2 \simeq 5$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \ln \left( {x + y} \right){\rm{d}}A \simeq 5$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.