Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 907: 12

Answer

$\int_1^2 \int_0^{1/x} \cos (xy) \ dy \ dx=\sin (1) \ln (2)$

Work Step by Step

Here, we have: $\int_1^2 \int_0^{1/x} \cos (xy) \ dy \ dx=\int_1^2[\dfrac{\sin (xy)}{x}]_0^{1/x} \ dx$ or, $= \int_1^2 [\dfrac{\sin (1)}{x}] \ dx$ or, $=\sin (1) \times [\ln (x)]_1^2$ or, $=\sin (1) \times [\ln (2)-\ln 1]$ or, $=\sin (1) \times [\ln (2)-0]$ Thus, we get: $\int_1^2 \int_0^{1/x} \cos (xy) \ dy \ dx=\sin (1) \ln (2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.