Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 907: 10

Answer

Please see the figure attached. $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \sqrt x y{\rm{d}}A = \frac{{256\sqrt 2 }}{{693}}$

Work Step by Step

We have $f\left( {x,y} \right) = \sqrt x y$ and the domain ${\cal D} = \left\{ {0 \le x \le 2,0 \le y \le 2x - {x^2}} \right\}$. Considering ${\cal D}$ as a vertically simple region, we evaluate: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \sqrt x y{\rm{d}}A = \mathop \smallint \limits_{x = 0}^2 \mathop \smallint \limits_{y = 0}^{2x - {x^2}} \sqrt x y{\rm{d}}y{\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^2 \sqrt x \left( {{y^2}|_0^{2x - {x^2}}} \right){\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^2 \sqrt x \left( {4{x^2} - 4{x^3} + {x^4}} \right){\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^2 \left( {4{x^{5/2}} - 4{x^{7/2}} + {x^{9/2}}} \right){\rm{d}}x$ $ = \frac{1}{2}\left( {\frac{8}{7}{x^{7/2}} - \frac{8}{9}{x^{9/2}} + \frac{2}{{11}}{x^{11/2}}} \right)|_0^2$ $ = \frac{1}{2}\left( {\frac{8}{7}\cdot8\sqrt 2 - \frac{8}{9}\cdot16\sqrt 2 + \frac{2}{{11}}\cdot32\sqrt 2 } \right) = \frac{{256\sqrt 2 }}{{693}}$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \sqrt x y{\rm{d}}A = \frac{{256\sqrt 2 }}{{693}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.