Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 907: 3

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} xy{\rm{d}}A \simeq 2.9375$

Work Step by Step

Write $f\left( {x,y} \right) = xy$. From Figure 1, we see that $\Delta x = \Delta y = 0.5$. Referring to Figure 1, there are $4 \times 4$ subrectangles, so using the midpoints as sample points, the Riemann sum to estimate $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} xy{\rm{d}}A$ is ${S_{4,4}}$ given by ${S_{4,4}} = \mathop \sum \limits_{i = 1}^4 \mathop \sum \limits_{j = 1}^4 f\left( {{P_{ij}}} \right)\Delta {x_i}\Delta {y_j}$ $ = 0.25(f\left( {1.25,0.25} \right) + f\left( {1.75,0.25} \right)$ ${\ \ \ }$ $ + f\left( {0.75,0.75} \right) + f\left( {1.25,0.75} \right) + f\left( {1.75,0.75} \right)$ ${\ \ \ }$ $ + f\left( {0.75,1.25} \right) + f\left( {1.25,1.25} \right) + f\left( {1.75,1.25} \right)$ ${\ \ \ }$ $ + f\left( {0.75,1.75} \right) + f\left( {1.25,1.75} \right))$ $ = 0.25(0.3125 + 0.4375 + 0.5625 + 0.9375 + 1.3125 + 0.9375$ ${\ \ \ }$ $ + 1.5625 + 2.1875 + 1.3125 + 2.1875)$ $ = 2.9375$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} xy{\rm{d}}A \simeq 2.9375$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.