Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 880: 9

Answer

$\dfrac{1}{3}-\dfrac{\sqrt 3}{6}$

Work Step by Step

We write the region in the polar co-ordinates as: $0 \leq r \leq 1$ and $\dfrac{\pi}{3} \leq \theta \leq \dfrac{\pi}{2}$ $\iint_{D} f(x,y) \ dA=\int_{\pi/3}^{\frac{\pi}{2}} \int_0^{1} (r \cos \theta) (r) \ dr \ d\theta$ Now, we have: $\int_{\pi/3}^{\frac{\pi}{2}} \int_0^{1} (r \cos \theta) (r) \ dr \ d\theta=\int_{\pi/3}^{\pi/2} [\dfrac{r^3}{3}]_0^{1} d\theta$ or. $=\int_{\pi/3}^{\pi/2} [\dfrac{1}{3}-0] \cos \theta \ d \theta$ or. $=\dfrac{1}{3}[\sin \theta]_{\pi/3}^{\pi/2}$ or, $=\dfrac{1}{3}[1-\dfrac{\sqrt 3}{2}]$ or, $=\dfrac{1}{3}-\dfrac{\sqrt 3}{6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.