Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 880: 13

Answer

Please see the figure attached. $\mathop \smallint \limits_{ - 1}^2 \mathop \smallint \limits_0^{\sqrt {4 - {x^2}} } \left( {{x^2} + {y^2}} \right){\rm{d}}y{\rm{d}}x \simeq 9.244$

Work Step by Step

We have $\mathop \smallint \limits_{ - 1}^2 \mathop \smallint \limits_0^{\sqrt {4 - {x^2}} } \left( {{x^2} + {y^2}} \right){\rm{d}}y{\rm{d}}x$. From the order of the integration, we obtain the region of integration: $ - 1 \le x \le 2$, ${\ \ \ \ }$ $0 \le y \le \sqrt {4 - {x^2}} $ Write $f\left( {x,y} \right) = {x^2} + {y^2}$. Using $x = r\cos \theta $ and $y = r\sin \theta $, in polar coordinates $f\left( {r\cos \theta ,r\sin \theta } \right) = {r^2}$. We sketch the region and see that the region is part of a disk of radius $2$, and bounded left by $x=-1$. We divide the region ${\cal D}$ into two subregion ${{\cal D}_1}$ and ${{\cal D}_2}$. So, first we need to find the angle of the ray that separate ${{\cal D}_1}$ and ${{\cal D}_2}$. Substituting $x=-1$ in ${x^2} + {y^2} = 4$ gives $1 + {y^2} = 4$ $y = \pm \sqrt 3 $ Since $y>0$, so the ray intersects the circle at $\left( { - 1,\sqrt 3 } \right)$. We find the angle of this ray by evaluating: $\tan \theta = - \sqrt 3 $ $\theta = \frac{2}{3}\pi $ Notice that as $\theta$ varies from $0$ to $\frac{2}{3}\pi $, $r$ ranges from $0$ to $2$. We describe this part of ${\cal D}$ as ${{\cal D}_1} = \left\{ {\left( {r,\theta } \right)|0 \le r \le 2,0 \le \theta \le \frac{2}{3}\pi } \right\}$ However, from $\theta = \frac{2}{3}\pi $ to $\theta = \pi $, the rays intersect the line $x=-1$. Using $x = r\cos \theta $, we find the polar equation of the line $x=-1$: $r\cos \theta = - 1$ $r = - \frac{1}{{\cos \theta }}$ Thus, the polar description of this part of ${\cal D}$ is ${{\cal D}_2} = \left\{ {\left( {r,\theta } \right)|0 \le r \le - \frac{1}{{\cos \theta }},\frac{2}{3}\pi \le \theta \le \pi } \right\}$ Using the linearity property of the double integral, we evaluate: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {r\cos \theta ,r\sin \theta } \right)r{\rm{d}}r{\rm{d}}\theta = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_1}}^{} f\left( {r\cos \theta ,r\sin \theta } \right)r{\rm{d}}r{\rm{d}}\theta$ $ + \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{{\cal D}_2}}^{} f\left( {r\cos \theta ,r\sin \theta } \right)r{\rm{d}}r{\rm{d}}\theta$ $ = \mathop \smallint \limits_{\theta = 0}^{2\pi /3} \mathop \smallint \limits_{r = 0}^2 f\left( {r\cos \theta ,r\sin \theta } \right)r{\rm{d}}r{\rm{d}}\theta $ $ + \mathop \smallint \limits_{\theta = 2\pi /3}^\pi \mathop \smallint \limits_{r = 0}^{ - 1/\cos \theta } f\left( {r\cos \theta ,r\sin \theta } \right)r{\rm{d}}r{\rm{d}}\theta $ $ = \mathop \smallint \limits_{\theta = 0}^{2\pi /3} \mathop \smallint \limits_{r = 0}^2 {r^3}{\rm{d}}r{\rm{d}}\theta + \mathop \smallint \limits_{\theta = 2\pi /3}^\pi \mathop \smallint \limits_{r = 0}^{ - 1/\cos \theta } {r^3}{\rm{d}}r{\rm{d}}\theta $ $ = \left( {\theta |_0^{2\pi /3}} \right)\left( {\frac{1}{4}{r^4}|_0^2} \right) + \mathop \smallint \limits_{\theta = 2\pi /3}^\pi \left( {\frac{1}{4}{r^4}|_0^{ - 1/\cos \theta }} \right){\rm{d}}\theta $ $ = \frac{8}{3}\pi + \frac{1}{4}\mathop \smallint \limits_{\theta = 2\pi /3}^\pi {\sec ^4}\theta {\rm{d}}\theta $ Recall from Eq. (14) of the Table of Trigonometric Integrals (Section 8.2): $\mathop \smallint \limits_{\theta = 2\pi /3}^\pi {\sec ^4}\theta {\rm{d}}\theta = \frac{{\tan \theta {{\sec }^2}\theta }}{3}|_{2\pi /3}^\pi + \frac{2}{3}\mathop \smallint \limits_{\theta = 2\pi /3}^\pi {\sec ^2}\theta {\rm{d}}\theta $ $ = \frac{4}{{\sqrt 3 }} + \frac{2}{3}\mathop \smallint \limits_{\theta = 2\pi /3}^\pi {\sec ^2}\theta {\rm{d}}\theta $ Again using Eq. (14) of the Table of Trigonometric Integrals, we get $\mathop \smallint \limits_{\theta = 2\pi /3}^\pi {\sec ^4}\theta {\rm{d}}\theta = \frac{4}{{\sqrt 3 }} + \frac{2}{3}\left( {\tan \theta |_{2\pi /3}^\pi } \right)$ $ = \frac{4}{{\sqrt 3 }} + \frac{2}{3}\left( {\sqrt 3 } \right) = \frac{6}{{\sqrt 3 }} = 2\sqrt 3 $ Substituting the result $\mathop \smallint \limits_{\theta = 2\pi /3}^\pi {\sec ^4}\theta {\rm{d}}\theta = 2\sqrt 3 $ in the integration above gives $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {r\cos \theta ,r\sin \theta } \right)r{\rm{d}}r{\rm{d}}\theta = \frac{8}{3}\pi + \frac{1}{2}\sqrt 3 \simeq 9.244$ Thus, $\mathop \smallint \limits_{ - 1}^2 \mathop \smallint \limits_0^{\sqrt {4 - {x^2}} } \left( {{x^2} + {y^2}} \right){\rm{d}}y{\rm{d}}x = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {r^3}{\rm{d}}r{\rm{d}}\theta \simeq 9.244$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.