Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 880: 2

Answer

$\dfrac{15 \pi}{2}$

Work Step by Step

We write the region in the polar co-ordinates as: $1 \leq r \leq 2$ and $0 \leq \theta \leq 2\pi$ $\iint_{D} f(x,y) \ dA=\int_0^{2\pi} \int_0^{\sqrt 2} (r) (r) \ dr \ d\theta$ Now, we have: $\int_0^{2\pi} \int_1^{2} (r^2) (r) \ dr \ d\theta=\int_0^{2\pi} [\dfrac{r^4}{4}]_1^{2} d\theta$ or, $=\int_0^{2\pi} [\dfrac{2^4}{4}-\dfrac{1}{4}] d\theta$ or. $=[\dfrac{15}{4} \theta]_0^{2\pi}$ or. $=\dfrac{15 \pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.