Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 880: 17

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \left| {xy} \right|{\rm{d}}A = \frac{1}{2}$

Work Step by Step

We have $f\left( {x,y} \right) = \left| {xy} \right|$ and the region ${x^2} + {y^2} \le 1$. In polar coordinates we have $f\left( {r\cos \theta ,r\sin \theta } \right) = \left| {{r^2}\cos \theta \sin \theta } \right| = \frac{1}{2}{r^2}\left| {\sin 2\theta } \right|$ The description implies that the region is a unit disk. Thus, the region description in polar coordinates: ${\cal D} = \left\{ {\left( {r,\theta } \right)|0 \le r \le 1,0 \le \theta \le 2\pi } \right\}$ Using the Change of Variables Formula for ${\cal D}$, we evaluate $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {r\cos \theta ,r\sin \theta } \right)r{\rm{d}}r{\rm{d}}\theta $ $ = \frac{1}{2}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^1 {r^3}\left| {\sin 2\theta } \right|{\rm{d}}r{\rm{d}}\theta $ $ = \frac{1}{2}\left( {\mathop \smallint \limits_{\theta = 0}^{2\pi } \left| {\sin 2\theta } \right|{\rm{d}}\theta } \right)\left( {\mathop \smallint \limits_{r = 0}^1 {r^3}{\rm{d}}r} \right)$ Notice that $\sin 2\theta $ is positive for $0 \le \theta \le \frac{\pi }{2}$ and negative for $\frac{\pi }{2} \le \theta \le \pi $; and so on. Since the integrand in the right-hand side is $\left| {\sin 2\theta } \right|$, the value is always positive. Thus, the periodicity occurs at each $\frac{\pi }{2}$. Thus, by symmetry we have $\mathop \smallint \limits_{\theta = 0}^{2\pi } \left| {\sin 2\theta } \right|{\rm{d}}\theta = {\bf{4}}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \sin 2\theta {\rm{d}}\theta $ $ = - 2\left( {\cos 2\theta |_0^{\pi /2}} \right)$ $ = - 2\left( { - 2} \right) = 4$ Thus, $\frac{1}{2}\left( {\mathop \smallint \limits_{\theta = 0}^{2\pi } \left| {\sin 2\theta } \right|{\rm{d}}\theta } \right)\left( {\mathop \smallint \limits_{r = 0}^1 {r^3}{\rm{d}}r} \right) = \frac{1}{2}\left( 4 \right)\left( {\frac{1}{4}} \right) = \frac{1}{2}$ Therefore, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \left| {xy} \right|{\rm{d}}A = \frac{1}{2}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^1 {r^3}\left| {\sin 2\theta } \right|{\rm{d}}r{\rm{d}}\theta = \frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.