Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 880: 24

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} x\sqrt {{x^2} + {y^2}} {\rm{d}}A = \frac{2}{{15}}$

Work Step by Step

Write $f\left( {x,y} \right) = x\sqrt {{x^2} + {y^2}} $. In polar coordinates, $f\left( {r\cos \theta ,r\sin \theta } \right) = {r^2}\cos \theta $ We have the shaded region ${\cal D}$ enclosed by the lemniscate curve ${r^2} = \sin 2\theta $ as is shown in Figure 21. In this region, the angle $\theta$ ranges from $0$ to $\frac{\pi }{2}$. The ray from the origin intersects ${\cal D}$ in a single point at $r = {\left( {\sin 2\theta } \right)^{1/2}}$. Thus, the polar description of ${\cal D}$: ${\cal D} = \left\{ {\left( {r,\theta } \right)|0 \le r \le {{\left( {\sin 2\theta } \right)}^{1/2}},0 \le \theta \le \frac{\pi }{2}} \right\}$ Using Eq. (4) of Theorem 1, we evaluate $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} x\sqrt {{x^2} + {y^2}} {\rm{d}}A = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {r^3}\cos \theta {\rm{d}}r{\rm{d}}\theta $ $ = \mathop \smallint \limits_{\theta = 0}^{\pi /2} \mathop \smallint \limits_{r = 0}^{{{\left( {\sin 2\theta } \right)}^{1/2}}} {r^3}\cos \theta {\rm{d}}r{\rm{d}}\theta $ $ = \frac{1}{4}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \left( {{r^4}|_0^{{{\left( {\sin 2\theta } \right)}^{1/2}}}} \right)\cos \theta {\rm{d}}\theta $ $ = \frac{1}{4}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \left( {{{\sin }^2}2\theta } \right)\cos \theta {\rm{d}}\theta $ $ = \mathop \smallint \limits_{\theta = 0}^{\pi /2} {\sin ^2}\theta {\cos ^3}\theta {\rm{d}}\theta $ Using Eq. (7) of the Table of Trigonometric Integrals (Section 8.2), the last integral becomes $ = \frac{{{{\sin }^3}\theta {{\cos }^2}\theta }}{5}|_0^{\pi /2} + \frac{2}{5}\mathop \smallint \limits_{\theta = 0}^{\pi /2} {\sin ^2}\theta \cos \theta {\rm{d}}\theta $ The first term on the right-hand side is zero. Now, we evaluate the second term on the right-hand side: $\frac{2}{5}\mathop \smallint \limits_{\theta = 0}^{\pi /2} {\sin ^2}\theta \cos \theta {\rm{d}}\theta $ Write $u = \sin \theta $. So, $du = \cos \theta d\theta $. $\frac{2}{5}\mathop \smallint \limits_{\theta = 0}^{\pi /2} {\sin ^2}\theta \cos \theta {\rm{d}}\theta = \frac{2}{5}\mathop \smallint \limits_{u = 0}^1 {u^2}{\rm{d}}u = \frac{2}{5}\left( {\frac{1}{3}{u^3}|_0^1} \right) = \frac{2}{{15}}$ Thus, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} x\sqrt {{x^2} + {y^2}} {\rm{d}}A = \frac{2}{{15}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.