Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 880: 12

Answer

$\dfrac{8}{3}$

Work Step by Step

We write the region in the polar co-ordinates as: $0 \leq r \leq 2 \sec \theta$ and $\pi/4 \leq \theta \leq \dfrac{\pi}{3}$ and $\iint_{D} f(x,y) \ dA=\int_{\pi/4}^{\frac{\pi}{3}} \int_0^{2 \sec \theta} ( r \sin \theta) (r) \ dr \ d\theta$ Now, we have: $\int_{\pi/4}^{\frac{\pi}{3}} \int_0^{2 \sec \theta} ( r \sin \theta) (r) \ dr \ d\theta=\int_{\pi/4}^{\frac{\pi}{3}} [\dfrac{r^3}{3}]_0^{2\sec \theta} d\theta$ or. $=\dfrac {1}{3} \times \int_{\pi/4}^{\pi/3} [8 \sec^3 \theta-0] \sin \theta \ d \theta$ or. $=\dfrac{8}{3} \int_{\pi/4}^{\pi/3}[\sec^2 \theta \sec \theta] \sin \theta \ d \theta$ or, $=\dfrac{8}{3} \times [\dfrac{\tan^2 \theta}{2}]_{\pi/4}^{\pi/3}$ or, $=\dfrac{8}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.