Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 880: 11

Answer

$\dfrac{125}{6}$

Work Step by Step

We write the region in the polar co-ordinates as: $0 \leq r \leq 5 \csc \theta$ and $\dfrac{\pi}{4} \leq \theta \leq \dfrac{\pi}{2}$ $\iint_{D} f(x,y) \ dA=\int_{\pi/4}^{\frac{\pi}{2}} \int_0^{5 \csc \theta} ( r \cos \theta) (r) \ dr \ d\theta$ Now, we have: $\int_{\pi/4}^{\frac{\pi}{2}} \int_0^{5 \csc \theta} ( r \cos \theta) (r) \ dr \ d\theta =\int_{\pi/4}^{\pi/2} [\dfrac{r^3}{3}]_0^{5 \csc \theta} \cos \theta d\theta$ or. $=\dfrac{125}{3}\int_{\pi/4}^{\pi/2} [\csc^3 \theta-0] \cos \theta \ d \theta$ or. $=\dfrac{125}{3}[-\dfrac{\cot^2 \theta}{2}]_{\pi/4}^{\pi/2}$ or, $=\dfrac{125}{6} \times [0-(-1)]$ or, $=\dfrac{125}{6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.