Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 880: 4

Answer

$\dfrac{2}{9}$

Work Step by Step

We write the region in the polar co-ordinates as: $0 \leq r \leq 1$ and $0 \leq \theta \leq \pi$ $\iint_{D} f(x,y) \ dA=\int_0^{\pi} \int_0^{1} (r^7 \sin \theta) (r) \ dr \ d\theta$ Now, we have: $\int_0^{\pi} \int_0^{1} (r^7 \sin \theta) (r) \ dr \ d\theta =\int_0^{\pi} [\dfrac{r^9}{9}]_0^{1} \sin \theta d\theta$ or, $=\int_0^{\pi} \dfrac{\sin \theta}{9} d\theta$ or. $=(1/9) \times[-\cos \theta]_0^{\pi}$ or. $=\dfrac{1}{9}[-(-1)-(-1)]$ or. $=\dfrac{2}{9}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.