Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 880: 19

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \left( {x - y} \right){\rm{d}}A = 0$

Work Step by Step

We have $f\left( {x,y} \right) = x - y$ and the region: ${x^2} + {y^2} \le 1$, $x + y \ge 1$. Notice that the region is the same with the one in Exercise 18. In polar coordinates, $f\left( {r\cos \theta ,r\sin \theta } \right) = r\left( {\cos \theta - \sin \theta } \right)$. The description of the region implies that it is bounded by the line $x+y=1$ and the circle of radius $1$. First, we find the line $x+y=1$ in polar coordinates. Using $x = r\cos \theta $ and $y = r\sin \theta $, we get $r\cos \theta + r\sin \theta = 1$ $r = \frac{1}{{\cos \theta + \sin \theta }}$ From the figure attached, we see that as $\theta$ varies from $\theta = 0$ to $\theta = \frac{\pi }{2}$, $r$ varies from $r = \frac{1}{{\cos \theta + \sin \theta }}$ to $r=1$. Thus, the region description: ${\cal D} = \left\{ {\left( {r,\theta } \right)|\frac{1}{{\cos \theta + \sin \theta }} \le r \le 1,0 \le \theta \le \frac{\pi }{2}} \right\}$ Using Eq. (4) of Theorem 1, we evaluate $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {r\cos \theta ,r\sin \theta } \right)r{\rm{d}}r{\rm{d}}\theta $ $ = \mathop \smallint \limits_{\theta = 0}^{\pi /2} \mathop \smallint \limits_{r = 1/\left( {\cos \theta + \sin \theta } \right)}^1 \left( {\cos \theta - \sin \theta } \right){r^2}{\rm{d}}r{\rm{d}}\theta $ $ = \frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \left( {\cos \theta - \sin \theta } \right)\left( {{r^3}|_{1/\left( {\cos \theta + \sin \theta } \right)}^1} \right){\rm{d}}\theta $ $ = \frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \left( {\cos \theta - \sin \theta } \right)\left( {1 - \frac{1}{{{{\left( {\cos \theta + \sin \theta } \right)}^3}}}} \right){\rm{d}}\theta $ $ = \frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \left( {\cos \theta - \sin \theta } \right){\rm{d}}\theta - \frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \frac{{\cos \theta - \sin \theta }}{{{{\left( {\cos \theta + \sin \theta } \right)}^3}}}{\rm{d}}\theta $ 1. Consider the integral: $\frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \left( {\cos \theta - \sin \theta } \right){\rm{d}}\theta $ $\frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \left( {\cos \theta - \sin \theta } \right){\rm{d}}\theta = \frac{1}{3}\left( {\sin \theta + \cos \theta } \right)|_0^{\pi /2}$ $ = \frac{1}{3}\left( {1 - 1} \right) = 0$ 2. Consider the integral: $\frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \frac{{\cos \theta - \sin \theta }}{{{{\left( {\cos \theta + \sin \theta } \right)}^3}}}{\rm{d}}\theta $ Write $u = \cos \theta + \sin \theta $. So, $du = \left( { - \sin \theta + \cos \theta } \right)d\theta $. Thus, $\frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \frac{{\cos \theta - \sin \theta }}{{{{\left( {\cos \theta + \sin \theta } \right)}^3}}}{\rm{d}}\theta = \frac{1}{3}\mathop \smallint \limits_{u = 1}^1 {u^{ - 3}}{\rm{d}}u$ But the lower limit and upper limit of integration is the same, therefore $\frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \frac{{\cos \theta - \sin \theta }}{{{{\left( {\cos \theta + \sin \theta } \right)}^3}}}{\rm{d}}\theta = \frac{1}{3}\mathop \smallint \limits_{u = 1}^1 {u^{ - 3}}{\rm{d}}u = 0$ Both integrals yield zero. Thus, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \left( {x - y} \right){\rm{d}}A = \mathop \smallint \limits_{\theta = 0}^{\pi /2} \mathop \smallint \limits_{r = 1/\left( {\cos \theta + \sin \theta } \right)}^1 \left( {\cos \theta - \sin \theta } \right){r^2}{\rm{d}}r{\rm{d}}\theta = 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.