Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 880: 10

Answer

$\pi^2$

Work Step by Step

We write the region in the polar co-ordinates as: $0 \leq r \leq 4$ and $0 \leq \theta \leq \dfrac{\pi}{2}$ and $\tan^{-1} \dfrac{y}{x}=\tan^{-1} (\dfrac{r \sin \theta}{r \cos \theta})=\tan^{-1} (\tan \theta)=\theta$ $\iint_{D} f(x,y) \ dA=\int_{0}^{\frac{\pi}{2}} \int_0^{4} ( \theta) (r) \ dr \ d\theta$ Now, we have: $\int_{0}^{\frac{\pi}{2}} \int_0^{4} ( \theta) (r) \ dr \ d\theta=\int_{0}^{\pi/2} [\dfrac{r^2}{2}]_0^{4} d\theta$ or. $=\int_{0}^{\pi/2} [8-0] \theta \ d \theta$ or. $=8[\dfrac{\theta^2}{2}]_0^{\pi/2}$ or, $=4[\dfrac{\pi^2}{4}-0]$ or, $=\pi^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.