Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 801: 9

Answer

$$-7$$

Work Step by Step

Given $$ f(x, y)=3 x-7 y, \quad \mathbf{r}(t)=\langle\cos t, \sin t\rangle, \quad t=0$$ Since $ \mathbf{r}(0)=\langle1,0\rangle$ and \begin{align*} \nabla f&=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle\\ &=\langle 3,-7\rangle\\ \mathbf{r}^{\prime}(t)&=\langle-\sin t, \cos t\rangle \end{align*} Then \begin{align*} \frac{d}{d t} f(\mathbf{r}(t))&=\nabla f_{\mathbf{r}(t)} \cdot \mathbf{r}^{\prime}(t)\\ &= \langle 3,-7\rangle\cdot \langle-\sin t, \cos t\rangle \end{align*} Hence \begin{align*} \frac{d}{d t} f(\mathbf{r}(t))\bigg|_{t=0} &= \langle 3,-7\rangle\cdot \langle0, 1\rangle \\ &=-7 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.