Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 801: 27

Answer

$$\frac{6}{ \sqrt{13}}$$

Work Step by Step

Given $$ f(x, y)=\ln \left(x^{2}+y^{2}\right), \quad \mathbf{v}=3 \mathbf{i}-2 \mathbf{j}, \quad P=(1,0) $$ Since the direction of $\mathbf{v}$ is \begin{align*} \mathbf{u}&=\frac{\mathbf{v}}{\|\mathbf{v}\|}\\ &=\frac{\langle 3,-2\rangle}{\sqrt{9+4}}\\ &=\left\langle\frac{3}{\sqrt{13}},\frac{-2}{\sqrt{13}}\right\rangle \end{align*} and \begin{align*} \nabla f&=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle\\ &=\left\langle\frac{2 x}{x^{2}+y^{2}}, \frac{2 y}{x^{2}+y^{2}}\right\rangle \\ \nabla f_{(1,0)}&=\left\langle 2,0\right\rangle \end{align*} Then the directional derivatives are given by \begin{align*} D_{\mathbf{u}} f(3,4)&=\nabla f_{(3,4)} \cdot \mathbf{u}\\ &=\left\langle 2,0\right\rangle \cdot\left\langle\frac{3}{\sqrt{13}},\frac{-2}{\sqrt{13}}\right\rangle\\ &=\frac{6}{ \sqrt{13}} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.