Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 801: 30

Answer

$$\frac{2 \ln(2e)}{\sqrt{6}}$$

Work Step by Step

Given $$g(x, y, z)=x \ln (y+z), \quad \mathbf{v}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}, \quad P=(2, e, e) $$ Since the direction of $\mathbf{v}$ is \begin{align*} \mathbf{u}&=\frac{\mathbf{v}}{\|\mathbf{v}\|}\\ &=\frac{\langle 2,-1,1\rangle}{\sqrt{4+1+1}}\\ &=\left\langle\frac{2}{\sqrt{6}},\frac{-1}{\sqrt{6}},\frac{1}{\sqrt{6}}\right\rangle \end{align*} and \begin{align*} \nabla g&=\left\langle\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z} \right\rangle\\ &=\left\langle \ln (y+z), \frac{x}{y+z},\frac{x}{y+z}\right\rangle \\ \nabla g_{(2,e,e)}&=\left\langle \ln(2e), \frac{1}{e},\frac{1}{e}\right\rangle \end{align*} Then the directional derivatives are given by \begin{align*} D_{\mathbf{u}} g(2,e,e)&=\nabla g_{(2,e,e)} \cdot \mathbf{u}\\ &=\left\langle \ln(2e), \frac{1}{e},\frac{1}{e}\right\rangle \cdot \left\langle\frac{2}{\sqrt{6}},\frac{-1}{\sqrt{6}},\frac{1}{\sqrt{6}}\right\rangle\\ &=\frac{2 \ln(2e)}{\sqrt{6}} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.