Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 801: 6

Answer

$$\nabla g =\left\langle \frac{-x^2+y^2}{\left(x^2+y^2\right)^2} ,-\frac{2xy}{\left(x^2+y^2\right)^2} \right\rangle$$

Work Step by Step

Given $$ g(x, y)=\frac{x}{x^{2}+y^{2}}$$ Since \begin{align*} \frac{\partial g}{\partial x}&=\frac{\frac{\partial \:}{\partial \:x}\left(x\right)\left(x^2+y^2\right)-\frac{\partial \:}{\partial \:x}\left(x^2+y^2\right)x}{\left(x^2+y^2\right)^2}= \frac{-x^2+y^2}{\left(x^2+y^2\right)^2} \\ \frac{\partial g}{\partial y}&=x\frac{\partial \:}{\partial \:y}\left(\frac{1}{x^2+y^2}\right)= -\frac{2xy}{\left(x^2+y^2\right)^2} \end{align*} Then \begin{align*} \nabla g&=\left\langle\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y} \right\rangle\\ &=\left\langle \frac{-x^2+y^2}{\left(x^2+y^2\right)^2} ,-\frac{2xy}{\left(x^2+y^2\right)^2} \right\rangle \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.