Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 801: 1

Answer

(a) $\nabla f = \left( {{f_x},{f_y}} \right) = \left( {{y^2},2xy} \right)$, ${\ \ \ }$ $\nabla {f_{{\bf{r}}\left( t \right)}} = \left( {{t^6},{t^5}} \right)$ ${\bf{r}}'\left( t \right) = \left( {t,3{t^2}} \right)$ (b) At $t=1$, $\frac{d}{{dt}}f\left( {{\bf{r}}\left( 1 \right)} \right) = 4$. At $t=-1$, $\frac{d}{{dt}}f\left( {{\bf{r}}\left( { - 1} \right)} \right) = - 4$.

Work Step by Step

(a) We are given $f\left( {x,y} \right) = x{y^2}$ and ${\bf{r}}\left( t \right) = \left( {\frac{1}{2}{t^2},{t^3}} \right)$. So, $\nabla f = \left( {{f_x},{f_y}} \right) = \left( {{y^2},2xy} \right)$, ${\ \ \ }$ $\nabla {f_{{\bf{r}}\left( t \right)}} = \left( {{t^6},{t^5}} \right)$ ${\bf{r}}'\left( t \right) = \left( {t,3{t^2}} \right)$ (b) Using the Chain Rule for Paths we have $\frac{d}{{dt}}f\left( {{\bf{r}}\left( t \right)} \right) = \nabla {f_{{\bf{r}}\left( t \right)}}\cdot{\bf{r}}'\left( t \right)$ $\frac{d}{{dt}}f\left( {{\bf{r}}\left( t \right)} \right) = \left( {{t^6},{t^5}} \right)\cdot\left( {t,3{t^2}} \right) = {t^7} + 3{t^7} = 4{t^7}$ At $t=1$, $\frac{d}{{dt}}f\left( {{\bf{r}}\left( 1 \right)} \right) = 4$. At $t=-1$, $\frac{d}{{dt}}f\left( {{\bf{r}}\left( { - 1} \right)} \right) = - 4$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.