Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 801: 23

Answer

$$\frac{39}{4 \sqrt{2}}$$

Work Step by Step

Given $$ f(x, y)=x^{2} y^{3}, \quad \mathbf{v}=\mathbf{i}+\mathbf{j}, \quad P=\left(\frac{1}{6}, 3\right) $$ Since the direction of $\mathbf{v}$ is \begin{align*} \mathbf{u}&=\frac{\mathbf{v}}{\|\mathbf{v}\|}\\ &=\frac{\langle 1,1\rangle}{\sqrt{1+1}}\\ &=\left\langle\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right\rangle \end{align*} and \begin{align*} \nabla f&=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle\\ &=\left\langle 2 xy^3, 3x y^{2}\right\rangle \\ \nabla f_{(1/6,3)}&=\left\langle 9, \frac{3}{4}\right\rangle \end{align*} Then the directional derivatives are given by \begin{align*} D_{\mathbf{u}} f(1/6,3)&=\nabla f_{(1/6,3)} \cdot \mathbf{u}\\ &=\left\langle 9, \frac{3}{4}\right\rangle \cdot\left\langle\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right\rangle\\ &=\frac{9}{\sqrt{2}}+\frac{3}{4 \sqrt{2}}=\frac{39}{4 \sqrt{2}} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.