Answer
(a) $\nabla f = \left( {{f_x},{f_y}} \right) = \left( {y{{\rm{e}}^{xy}},x{{\rm{e}}^{xy}}} \right)$,
$\nabla {f_{{\bf{r}}\left( t \right)}} = \left( {\left( {1 + t} \right){{\rm{e}}^{{t^3}\left( {1 + t} \right)}},{t^3}{{\rm{e}}^{{t^3}\left( {1 + t} \right)}}} \right)$
${\bf{r}}'\left( t \right) = \left( {3{t^2},1} \right)$
(b) $\frac{d}{{dt}}f\left( {{\bf{r}}\left( t \right)} \right) = \left( {3{t^2} + 4{t^3}} \right){{\rm{e}}^{{t^3}\left( {1 + t} \right)}}$
(c) $f\left( t \right) = {{\rm{e}}^{{t^3}\left( {1 + t} \right)}}$
$f'\left( t \right) = {{\rm{e}}^{{t^3}\left( {1 + t} \right)}}\left( {3{t^2} + 4{t^3}} \right)$
The result agrees with part (b).
Work Step by Step
(a) We are given $f\left( {x,y} \right) = {{\rm{e}}^{xy}}$ and ${\bf{r}}\left( t \right) = \left( {{t^3},1 + t} \right)$. So,
$\nabla f = \left( {{f_x},{f_y}} \right) = \left( {y{{\rm{e}}^{xy}},x{{\rm{e}}^{xy}}} \right)$,
$\nabla {f_{{\bf{r}}\left( t \right)}} = \left( {\left( {1 + t} \right){{\rm{e}}^{{t^3}\left( {1 + t} \right)}},{t^3}{{\rm{e}}^{{t^3}\left( {1 + t} \right)}}} \right)$
${\bf{r}}'\left( t \right) = \left( {3{t^2},1} \right)$
(b) Using the Chain Rule for Paths we have
$\frac{d}{{dt}}f\left( {{\bf{r}}\left( t \right)} \right) = \nabla {f_{{\bf{r}}\left( t \right)}}\cdot{\bf{r}}'\left( t \right)$
$\frac{d}{{dt}}f\left( {{\bf{r}}\left( t \right)} \right) = \left( {\left( {1 + t} \right){{\rm{e}}^{{t^3}\left( {1 + t} \right)}},{t^3}{{\rm{e}}^{{t^3}\left( {1 + t} \right)}}} \right)\cdot\left( {3{t^2},1} \right)$
$ = 3{t^2}\left( {1 + t} \right){{\rm{e}}^{{t^3}\left( {1 + t} \right)}} + {t^3}{{\rm{e}}^{{t^3}\left( {1 + t} \right)}}$
$ = \left( {3{t^2} + 4{t^3}} \right){{\rm{e}}^{{t^3}\left( {1 + t} \right)}}$
(c) Write out the composite $f\left( {{\bf{r}}\left( t \right)} \right)$:
$f\left( {x,y} \right) = {{\rm{e}}^{xy}}$
$f\left( t \right) = {{\rm{e}}^{{t^3}\left( {1 + t} \right)}}$
Taking the derivative with respect to $t$ gives
$f'\left( t \right) = {{\rm{e}}^{{t^3}\left( {1 + t} \right)}}\left( {3{t^2} + 4{t^3}} \right)$
The result agrees with part (b).