Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 801: 2

Answer

(a) $\nabla f = \left( {{f_x},{f_y}} \right) = \left( {y{{\rm{e}}^{xy}},x{{\rm{e}}^{xy}}} \right)$, $\nabla {f_{{\bf{r}}\left( t \right)}} = \left( {\left( {1 + t} \right){{\rm{e}}^{{t^3}\left( {1 + t} \right)}},{t^3}{{\rm{e}}^{{t^3}\left( {1 + t} \right)}}} \right)$ ${\bf{r}}'\left( t \right) = \left( {3{t^2},1} \right)$ (b) $\frac{d}{{dt}}f\left( {{\bf{r}}\left( t \right)} \right) = \left( {3{t^2} + 4{t^3}} \right){{\rm{e}}^{{t^3}\left( {1 + t} \right)}}$ (c) $f\left( t \right) = {{\rm{e}}^{{t^3}\left( {1 + t} \right)}}$ $f'\left( t \right) = {{\rm{e}}^{{t^3}\left( {1 + t} \right)}}\left( {3{t^2} + 4{t^3}} \right)$ The result agrees with part (b).

Work Step by Step

(a) We are given $f\left( {x,y} \right) = {{\rm{e}}^{xy}}$ and ${\bf{r}}\left( t \right) = \left( {{t^3},1 + t} \right)$. So, $\nabla f = \left( {{f_x},{f_y}} \right) = \left( {y{{\rm{e}}^{xy}},x{{\rm{e}}^{xy}}} \right)$, $\nabla {f_{{\bf{r}}\left( t \right)}} = \left( {\left( {1 + t} \right){{\rm{e}}^{{t^3}\left( {1 + t} \right)}},{t^3}{{\rm{e}}^{{t^3}\left( {1 + t} \right)}}} \right)$ ${\bf{r}}'\left( t \right) = \left( {3{t^2},1} \right)$ (b) Using the Chain Rule for Paths we have $\frac{d}{{dt}}f\left( {{\bf{r}}\left( t \right)} \right) = \nabla {f_{{\bf{r}}\left( t \right)}}\cdot{\bf{r}}'\left( t \right)$ $\frac{d}{{dt}}f\left( {{\bf{r}}\left( t \right)} \right) = \left( {\left( {1 + t} \right){{\rm{e}}^{{t^3}\left( {1 + t} \right)}},{t^3}{{\rm{e}}^{{t^3}\left( {1 + t} \right)}}} \right)\cdot\left( {3{t^2},1} \right)$ $ = 3{t^2}\left( {1 + t} \right){{\rm{e}}^{{t^3}\left( {1 + t} \right)}} + {t^3}{{\rm{e}}^{{t^3}\left( {1 + t} \right)}}$ $ = \left( {3{t^2} + 4{t^3}} \right){{\rm{e}}^{{t^3}\left( {1 + t} \right)}}$ (c) Write out the composite $f\left( {{\bf{r}}\left( t \right)} \right)$: $f\left( {x,y} \right) = {{\rm{e}}^{xy}}$ $f\left( t \right) = {{\rm{e}}^{{t^3}\left( {1 + t} \right)}}$ Taking the derivative with respect to $t$ gives $f'\left( t \right) = {{\rm{e}}^{{t^3}\left( {1 + t} \right)}}\left( {3{t^2} + 4{t^3}} \right)$ The result agrees with part (b).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.