Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 801: 29

Answer

$$\frac{-1}{\sqrt{3}}$$

Work Step by Step

Given $$g(x, y, z)=x e^{-y z}, \quad \mathbf{v}=\langle 1,1,1\rangle, \quad P=(1,2,0) $$ Since the direction of $\mathbf{v}$ is \begin{align*} \mathbf{u}&=\frac{\mathbf{v}}{\|\mathbf{v}\|}\\ &=\frac{\langle 1,1,1\rangle}{\sqrt{1+1+1}}\\ &=\left\langle\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right\rangle \end{align*} and \begin{align*} \nabla g&=\left\langle\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z} \right\rangle\\ &=\left\langle e^{-y z},-x z e^{-y z},-x y e^{-y z}\right\rangle \\ \nabla g_{(1,2,0)}&=\left\langle 1, 0,-2\right\rangle \end{align*} Then the directional derivatives are given by \begin{align*} D_{\mathbf{u}} g(1,2,0)&=\nabla g_{(1,2,0)} \cdot \mathbf{u}\\ &=\left\langle 1, 0,-2\right\rangle \cdot\left\langle\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right\rangle\\ &=\frac{-1}{\sqrt{3}} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.