Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 801: 7

Answer

$$\nabla h =\left\langle y z^{-3}, x z^{-3},-3 x y z^{-4}\right\rangle$$

Work Step by Step

Given $$ h(x, y, z)=x y z^{-3}$$ Since \begin{align*} \frac{\partial h}{\partial x}&=y z^{-3}\\ \frac{\partial h}{\partial y}&=x z^{-3}\\ \frac{\partial h}{\partial z}&= -3 x y z^{-4} \end{align*} Then \begin{align*} \nabla h&=\left\langle\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}, \frac{\partial h}{\partial z}\right\rangle\\ &=\left\langle y z^{-3}, x z^{-3},-3 x y z^{-4}\right\rangle \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.