Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 801: 28

Answer

$$\frac{5}{3}$$

Work Step by Step

Given $$ g(x, y, z)=z^{2}-x y^{2}, \quad \mathbf{v}=\langle- 1,2,2\rangle, \quad P=(2,1,3) $$ Since the direction of $\mathbf{v}$ is \begin{align*} \mathbf{u}&=\frac{\mathbf{v}}{\|\mathbf{v}\|}\\ &=\frac{\langle -1,2,2\rangle}{\sqrt{1+4+4}}\\ &=\left\langle\frac{-1}{3},\frac{2}{3}, \frac{2}{3}\right\rangle \end{align*} and \begin{align*} \nabla g&=\left\langle\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z} \right\rangle\\ &=\left\langle -y^2, -2xy, 2z\right\rangle \\ \nabla g_{(2,1,3)}&=\left\langle -1, -4,6\right\rangle \end{align*} Then the directional derivatives are given by \begin{align*} D_{\mathbf{u}} g(2,1,3)&=\nabla f_{(2,1,3)} \cdot \mathbf{u}\\ &=\left\langle -1, -4,6\right\rangle \cdot\left\langle\frac{-1}{3},\frac{2}{3}, \frac{2}{3}\right\rangle\\ &=\frac{1}{3}-\frac{8}{3}+\frac{12}{3}=\frac{5}{3} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.