Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.4 Differentiability and Tangent Planes - Exercises - Page 789: 9

Answer

$$z=\frac{4}{5}+\frac{-12}{25}(x-\ln 4)+\frac{12}{25}(y-\ln 2)$$

Work Step by Step

Given $$f(x, y)=\operatorname{sech}(x-y), \quad(\ln 4, \ln 2)$$ Since \begin{align*} f(x,y)&= \operatorname{sech}(x-y) \ \ \ \ & f(\ln 4, \ln 2)&= \operatorname{sech}(\ln 2)=\frac{4}{5}\\ f_x(x,y)&=-\operatorname{sech}(x-y)\tanh (x-y)\ \ \ \ & f_x(\ln 4, \ln 2)&=\frac{-12}{25} \\ f_y(x,y)&= \operatorname{sech}(x-y)\tanh (x-y) \ \ \ \ & f_y(\ln 4, \ln 2)&= \frac{12}{25} \\ \\ \end{align*} Then the tangent plane at $(\ln 4, \ln 2)$ is given by \begin{align*} z&= f(\ln 4, \ln 2)+f_{x}(\ln 4, \ln 2)(x-\ln 4)+f_{y}(\ln 4, \ln 2)(y-\ln 2)\\ &=\frac{4}{5}+\frac{-12}{25}(x-\ln 4)+\frac{12}{25}(y-\ln 2) \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.