Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.4 Differentiability and Tangent Planes - Exercises - Page 789: 24

Answer

$f\left( {4.1,7.9} \right) = \frac{{4.1}}{{7.9}} \simeq 0.51875$ Using a calculator: $\frac{{4.1}}{{7.9}} \simeq 0.518987$

Work Step by Step

Let $f\left( {x,y} \right) = \frac{x}{y}$. So, the partial derivatives are ${f_x} = \frac{1}{y}$, ${\ \ \ }$ ${f_y} = - \frac{x}{{{y^2}}}$ We can consider $\frac{{4.1}}{{7.9}}$ as a value of $f\left( {x,y} \right) = \frac{x}{y}$. Thus, $f\left( {4.1,7.9} \right) = \frac{{4.1}}{{7.9}}$ Using the linear approximation, Eq. (3) we have $f\left( {a + h,b + k} \right) \approx f\left( {a,b} \right) + {f_x}\left( {a,b} \right)h + {f_y}\left( {a,b} \right)k$ For $\left( {a,b} \right) = \left( {4,8} \right)$ and $\left( {h,k} \right) = \left( {0.1, - 0.1} \right)$, we get $f\left( {4.1,7.9} \right) \approx f\left( {4,8} \right) + {f_x}\left( {4,8} \right)\cdot0.1 + {f_y}\left( {4,8} \right)\cdot\left( { - 0.1} \right)$ $f\left( {4.1,7.9} \right) \simeq \frac{1}{2} + \frac{1}{8}\cdot0.1 + \frac{1}{{16}}\cdot0.1$ $f\left( {4.1,7.9} \right) = \frac{{4.1}}{{7.9}} \simeq 0.51875$ Using a calculator, we get $\frac{{4.1}}{{7.9}} \simeq 0.518987$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.