Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.4 Differentiability and Tangent Planes - Exercises - Page 789: 20

Answer

The linearization to $f\left( {x,y,z} \right) = \frac{{xy}}{z}$ at the point $\left( {2,1,2} \right)$: $L\left( {x,y,z} \right) = \frac{1}{2}x + y - \frac{1}{2}z$ Using linearization: $f\left( {2.05,0.9,2.01} \right) \approx 0.92$ Using a calculator: $f\left( {2.05,0.9,2.01} \right) \approx 0.91791$.

Work Step by Step

We are given $f\left( {x,y,z} \right) = \frac{{xy}}{z}$. The partial derivatives are ${f_x} = \frac{y}{z}$, ${\ \ }$ ${f_y} = \frac{x}{z}$, ${\ \ }$ ${f_z} = - \frac{{xy}}{{{z^2}}}$ The linearization of $f$ in three variables is given by $L\left( {x,y,z} \right) = f\left( {a,b,c} \right) + {f_x}\left( {a,b,c} \right)\left( {x - a} \right) + {f_y}\left( {a,b,c} \right)\left( {y - b} \right) + {f_z}\left( {a,b,c} \right)\left( {z - c} \right)$ The linearization of $f$ at $\left( {2,1,2} \right)$: $L\left( {x,y,z} \right) = f\left( {2,1,2} \right) + {f_x}\left( {2,1,2} \right)\left( {x - 2} \right) + {f_y}\left( {2,1,2} \right)\left( {y - 1} \right) + {f_z}\left( {2,1,2} \right)\left( {z - 2} \right)$ $L\left( {x,y,z} \right) = 1 + \frac{1}{2}\left( {x - 2} \right) + 1\left( {y - 1} \right) - \frac{1}{2}\left( {z - 2} \right)$ $L\left( {x,y,z} \right) = \frac{1}{2}x + y - \frac{1}{2}z$ Next, we estimate $f\left( {2.05,0.9,2.01} \right)$: From previous result we get $L\left( {x,y,z} \right) = \frac{1}{2}x + y - \frac{1}{2}z$ Thus, $f\left( {2.05,0.9,2.01} \right) \approx L\left( {2.05,0.9,2.01} \right) = \frac{1}{2}\cdot2.05 + 0.9 - \frac{1}{2}\cdot2.01$ $f\left( {2.05,0.9,2.01} \right) \approx 0.92$ Using a calculator we obtain $f\left( {2.05,0.9,2.01} \right) \approx 0.91791$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.