Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.4 Differentiability and Tangent Planes - Exercises - Page 789: 25

Answer

$f\left( {3.01,3.99} \right) = \sqrt {{{3.01}^2} + {{3.99}^2}} \simeq 4.998$ Using a calculator: $\sqrt {{{3.01}^2} + {{3.99}^2}} \simeq 4.99802$.

Work Step by Step

Let $f\left( {x,y} \right) = \sqrt {{x^2} + {y^2}} $. So, the partial derivatives are ${f_x} = \frac{x}{{\sqrt {{x^2} + {y^2}} }}$, ${\ \ \ }$ ${f_y} = \frac{y}{{\sqrt {{x^2} + {y^2}} }}$ We can consider $\sqrt {{{3.01}^2} + {{3.99}^2}} $ as a value of $f\left( {x,y} \right) = \sqrt {{x^2} + {y^2}} $. Thus, $f\left( {3.01,3.99} \right) = \sqrt {{{3.01}^2} + {{3.99}^2}} $ Using the linear approximation, Eq. (3) we have $f\left( {a + h,b + k} \right) \approx f\left( {a,b} \right) + {f_x}\left( {a,b} \right)h + {f_y}\left( {a,b} \right)k$ For $\left( {a,b} \right) = \left( {3,4} \right)$ and $\left( {h,k} \right) = \left( {0.01, - 0.01} \right)$, we get $f\left( {3.01,3.99} \right) \approx f\left( {3,4} \right) + {f_x}\left( {3,4} \right)\cdot0.01 + {f_y}\left( {3,4} \right)\cdot\left( { - 0.01} \right)$ $f\left( {3.01,3.99} \right) \simeq 5 + \frac{3}{5}\cdot0.01 - \frac{4}{5}\cdot0.01$ $f\left( {3.01,3.99} \right) = \sqrt {{{3.01}^2} + {{3.99}^2}} \simeq 4.998$ Using a calculator, we get $\sqrt {{{3.01}^2} + {{3.99}^2}} \simeq 4.99802$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.